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Practice Second Midterm Exam
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Based on handouts by Eric Roberts and Jerry Cain

Midterm Locations:
• Last Name A – F: Go to Hewlett 201
• Last Name G – Z: Go to Hewlett 200

This handout is intended to give you practice solving problems that are comparable in format and 
difficulty to the problems that will appear on the second midterm examination on Thursday, May 31. 
A solution set to this practice exam will be released online on Monday and handed out in class on 
Wednesday (since there is no class on Monday).

Time and place of the exam

The midterm exam is scheduled for a two-hour block at two different locations (note that the exams are 
not in the regular lecture room), divided by last name.  Although the syllabus lists the time as 7:00PM 
to 10:00PM, the exam is only two hours long.

Coverage

The midterm covers the material presented in class through and including the lecture on Friday, May 
24th on graphs.  Although all of the material that we have covered so far may appear on the test, the 
exam will primarily focus on algorithmic efficiency and data structures.

General instructions

Answer each of the questions given below.  Write all of your answers directly on the examination 
paper, including any work that you wish to be considered for partial credit.

Each question is marked with the number of points assigned to that problem.  The total number of 
points on the exam is 120.  We intend for the number of points to be roughly comparable to the number 
of minutes you should spend on that problem.

In all questions, you may include functions or definitions that have been developed in the course.  First  
of all, we will assume that you have included any of the header files that we have covered in the text. 
Thus, if you want to use a Vector, you can simply do so without bothering to spend the time copying 
out the appropriate  #include line.  If you want to use a function that appears in the book that is not 
exported by an interface, you should give us the page number on which that function appears.  If you 
want to include code from one of your own assignments, we won’t have a copy, and you’ll need to 
copy the code to your exam.

Unless otherwise indicated as part of the instructions for a specific problem, comments are not required 
on the exam.   Uncommented  code that  gets  the job done will  be sufficient  for  full  credit  on the 
problem.  On the other hand, comments may help you to get partial credit on a problem if they help us 
determine what you were trying to do.

The examination is open-book, and you may make use of any texts, handouts, or course notes.  You 
may not, however, use a computer of any kind.
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Problem One: Rebuilding Binary Search Trees

When implementing a binary search tree, an important efficiency concern is taking care that the tree 
remains balanced to ensure logarithmic performance for insert and lookup.  As it turns out, strategies 
that continually make minor rearrangements to rebalance the tree often end up spending too much time 
on those operations.  An alternative strategy is to let the client determine whether a problem exists and, 
if so, rebalance the tree all at once.

One reasonably efficient strategy for rebalancing a tree is to transfer the nodes into a sorted vector and 
then reconstruct an optimally balanced tree from the vector.  If you adopt this approach, you can 
implement a rebalancing operation for the BSTNode type by decomposing the problem into two helper 
methods as follows:

void rebalance(BSTNode*& root) {
   Vector<BSTNode *> v;
   fillVector(root, v);
   root = rebuildTree(v, 0, v.size() - 1);
}

The helper method

void fillVector(BSTNode *node, Vector<BSTNode *> & v);

adds all the nodes in the subtree rooted at node to the vector v, making sure that the nodes are added in 
the order they appear in the binary search tree.  The helper method

BSTNode *rebuildTree(Vector<BSTNode *> & v, int start, int end);

recreates a tree by adding all the nodes from the vector v between the indices start and end, inclusive. 
Here, the goal is to make sure that the subtree returned by this operation is as balanced as possible, 
which means that the root must be as close as possible to the center of the range.

Write code for fillVector and rebuildTree to complete the implementation of the rebalance 
method.

In writing this problem, you should keep the following ideas in mind:

• Your implementation should not create or destroy any existing nodes, but simply rearrange them 
into a more balanced structure.

• For full credit, your implementation must run in O(N) time, where N is the number of nodes.  As 
always, this calculation does not take into account infrequent operations (such as the various 
versions of expandCapacity) whose amortized cost is constant.  Thus, you may assume that adding 
an element to the end of a vector is a constant-time operation; adding an element at the beginning of 
a vector is not.
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Problem Two: Reversing a Queue

Suppose that you are implementing the Queue type using a linked list (as done in lecture) and are 
interested in adding the following member function:

void reverse();

This member function should reverse the contents of the queue.  For example, if the queue initially 
contained the elements 1, 2, 3, and 4 in sequence, the reversed queue should then contain 4, 3, 2, and 
then 1.  For  example, if the variable myQueue is initialized to the structure

calling myqueue.reverse() should change that structure to

Your implementation of reverse must not allocate any new heap storage but must instead simply 
change the pointers in the existing cells, as illustrated in the preceding diagram.  Since all of the 
collections types we have seen so far (Vector, Stack, Queue, etc.) allocate heap storage, this precludes 
the usage of any of those types.  You should assume that the private section of the queue is defined as 
follows:

private:
struct Cell {

string value;
Cell* next;

};
Cell* head;
Cell* tail;
int count;
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Problem Three: Wildcard Searches

One interesting application of tries is wildcard searching, in which you are interested in searching the 
trie not for a specific word, but for all words matching some particular pattern.  For example, consider 
the set of words

cat, chart, cot, car, hat, hot, war, warn, writ

Suppose want want to find all three-letter words that start with 'c' and end with 't'.  In that case, we 
could do a wildcard search for the string “c?t”, where the question mark stands for “any character.”  If 
we were to do this search over this set of words, we would get “cat” and “cot.”  However, “c?t” does 
not match “chart,” since the question mark can match just a single character.  Similarly, the search
“?a?” would return “cat,” “car,” “hat,” and “war,” but not “warn.”  We could also find all three-letter 
words ending with 'ot' by searching for “?ot,” which matches “cot” and “hot.”

Additionally, we might be in interested in finding every word in the set that ends with a 't', regardless 
of how many letters are in the word.  In that case, we could do a search for “*t,” which would match 
“cat,” “chart,” “cot,” “hat,” “hot,” and “writ.”  The search “*” will match every single word, while the 
search “cat*” will only match “cat.”

Using a trie, this sort of search can be implemented very efficiently.  Suppose that you have the 
following struct representing a node in a trie:

struct Node {
    bool isWord;
    Node* children[26];
};

Write a function

void wildcardSearch(Node* root, string pattern, Vector<string>& result);

that accepts as input a pointer to the root of the trie and string containing a pattern to search for, then 
fills in the specified Vector with every word in the trie that matches the given pattern.  You can 
assume that every letter in the pattern string is either a lower-case letter, a star, or a question mark.  As 
a hint, you might want to try implementing * in terms of ?.
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Problem Four: Open Addressing

Many hash table implementations—including the hash table that backs our  Map class—use external 
probing, so each bucket is actually a data structure storing all of the keys that hash to the same number. 

For this version of the  Map, you’re going to use  quadratic internal probing, which means that each 
bucket stores at most one key-value pair.  If the Map wants to store a second pair in a particular bucket, 
we just won’t let it.  We’ll force it to look elsewhere.

When entering a new key, the key is hashed and reduced to a number h.  If that particular bucket is  
empty, then the key-value pair is assigned and that’s that.  If the bucket is occupied, but the new key 
matches the key already residing there, the old value is replaced with the new one.  If the bucket is  
occupied, but occupied by a key different from the one being inserted, the search for an unoccupied 
bucket advances to examine slot h + 1, and if that fails, h + 3, and if that fails, h + 6, then h + 10, then  
h + 15, and so forth.  (Of course, all of these numbers—h, h + 1, h + 3, etc—are modulo the number of  
buckets.) 

You might ask why we’re going with the triangular numbers—0, 1, 3, 6, 10, 15, 21, etc— for offsets.  
(A number is triangular if can be expressed as the sum of the form 1 + 2 + 3 + … + k.  For instance, 10 
is triangular because it can be written as 1 + 2 + 3 + 4.)  We could try h, then h + 1, then h + 2, then  
h + 3, etc. But quadratic probing, using the triangular number offsets, does a better job of distributing 
the elements across the full range of buckets.  And as long as the number of buckets is a power of 2, 
this quadratic probing method will explore every bucket if necessary. 

Of course, there’s the danger that we’ll run out of buckets!  After all, there are a limited number of 
them, and each one can accommodate at most one key-value pair.  We’re going to adopt the strategy 
that, at the beginning of each insertion request, we’ll check to see if strictly more than 75% of the 
buckets  are  full,  and if  so,  we’ll  double the number of buckets  and rehash all  previously inserted 
elements  to  their  new home as  if  they’re  being inserted  for  the  very first  time.   You’re going to 
implement a new version of the Map using the ideas outlined above.  We’ll map strings to doubles to 
make things a little simpler.  Here is the class definition you’ll be working with (in practice, there 
would be  containsKey,  getValue,  iterator, and  mapAll methods as well, but you’re not going to 
implement or even use them, so they’re being omitted):

class Map { 
public: 

Map(); 
~Map(); 
bool enter(string key, double value); 

private: 
struct bucket { 

bool occupied; 
string key; 
double value; 

}; 
bucket *buckets; // addresses the array where all data gets stored 
int numBuckets;  // allocated length of the array 
int count;       // number of meaningful key-value pairs in the map 

int hash(string key, int numBuckets); 
void rehash();          

}; 
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The buckets field points to an array of numBuckets bucket records.  The occupied field keeps track 
of whether or not that particular bucket is occupied by real data.  If true, then some meaningful key-
value pair occupies the rest of the record; if false, the key and value fields are irrelevant and ignored. 
(Note that all key-value pairs reside directly within the array addressed by buckets.) 

i. Implement  the  Map constructor,  which constructs a raw  Map to be logically  empty but with 
enough space for 64 key-value pairs.  Then implement the destructor, which disposes of all 
resources maintained by the Map being destroyed. 

/** 
 * Constructor: Map 
 * ---------------- 
 * Initializes the raw space addressed by this so that it represents an 
 * empty Map otherwise capable of storing up to 64 key-value pairs. 
 */ 
const int kInitNumBuckets = 64; 
Map::Map(); 

/** 
 * Destructor: ~Map 
 * ---------------- 
 */ 
Map::~Map(); 

ii. Using the supplied hash method, implement the enter method, which ensures that the specified 
key is part of the Map and that it’s associated with the specified value. It uses the quadratic 
internal probing technique, as described above, to find a home for the new key-value pair. 
enter returns true if the new key-value pairs gets inserted into a previously unoccupied bucket, 
and false if the new value replaces a previously inserted one.  (Don’t worry about rehashing the 
Map if more then three quarters of the buckets are occupied.  You’ll worry about that in part c.)

const int kHashMultiplier = 716911; 
int Map::hash(string key, int numBuckets) { 

int hashcode = 0; 
for (int i = 0; i < key.size(); i++) { 
    hashcode = hashcode * kHashMultiplier + key[i]; 
} 
return hashcode % numBuckets; 

} 
/** 
 * Enters the key-value pair into the Map. 
 * If the specific key matches some previously inserted one, 
 * then the old value is overwritten by the old one.  
 * Otherwise, the new element is dropped into a previously 
 * unoccupied bucket, and the logical size of Map increases by 
 * one. 
 */ 
bool Map::enter(string key, double value) { 

if (count > 3 * numBuckets / 4) { 
rehash(); // you’ll implement this helper method in part c 

// TODO: Fill this in!
} 
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iii. Finally, implement the  rehash method, which updates the  Map so that it  has twice as many 
buckets and all of its key-value pairs are rehashed to take up residence in a bucket where they 
could have resided had the new number of buckets  been the number of  buckets  all  along. 
(You’ll benefit by figuring out how to call enter to help with the redistribution.) 

/** 
 * Doubles the number of buckets held by the Map addressed by this, 
 * and redistributes all of its key-value pairs.  Your implementation 
 * should not orphan any memory whatsoever. 
 */ 
void Map::rehash();
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